► Description:
شرح |
■
درباره این کتاب:
Introduction
to Ocean Circulation and Modeling provide
basics for physical oceanography covering
ocean properties, ocean circulations and
their modeling. First part of the book
explains concepts of oceanic circulation,
geostrophy, Ekman, Sverdrup dynamics,
Stommel and Munk problems, two-layer
dynamics, stratification, thermal and salt
diffusion, vorticity/instability, and so
forth. Second part highlights basic
implementation framework for ocean models,
discussion of different models, and their
unique differences from the common
framework with basin-scale modeling,
regional modeling, and interdisciplinary
modeling at different space and time
scales.
Features:
Covers ocean properties, ocean
circulations and their modeling.
Explains the centrality of a rotating
earth and its implications for ocean and
atmosphere in a simple manner.
Provides basic facts of ocean dynamics.
Illustrative diagrams for clear
understanding of key concepts.
Outlines interdisciplinary and complex
models for societal applications.
The book aims at Senior Undergraduate
Students, Graduate Students and
Researchers in Ocean Science and
Engineering, Ocean Technology, Physical
Oceanography, Ocean Circulation, Ocean
Modeling, Dynamical Oceanography and Earth
Science..
■ در این کتاب چه
میخوانیم:
Table of contents :
Chapter 1: Our Home – The Earth 1.1. The
Basics 1.2. The Oceans – An Introduction
1.3. Spatial and Temporal Scales 1.4.
Oceans – The Regulator of Temperature 1.5.
Carriers of Heat – Cyclones and Currents
1.6. Franklin to Satellites Chapter 2:
Responses and Forces 2.1. Introduction
2.2. The Response Variables 2.3. The
Forcing Function 2.4. Newton’s Laws 2.5.
Rate of Change 2.6. Forces on Fluid 2.6.1.
The pressure-gradient forces and
Hydrostatic Balance 2.6.2. Viscous Force
2.6.3. The Coriolis Force 2.7. The
Conservation Equations 2.7.1. The
Conservation of Mass 2.7.2. Conservation
of Heat and Salt 2.8. Governing Equations
Chapter 3: Geostrophic Equilibrium 3.1.
Introduction 3.2. The Geostrophic Balance
3.3. Dynamic Height and Geostrophic
Velocity 3.3.1. Geostrophic Velocity
3.3.2. Specific Volume Anomaly 3.3.3.
Velocity Across a Section 3.3.4. Absolute
Velocities 3.4. Large-Scale Geostrophic
Balance 3.5. Inertial Motion 3.6. Thermal
Wind Chapter 4: Wind-Driven Circulation
4.1. Introduction 4.2. Wind Stress and
Eddy Viscosity 4.3. The Ekman Balance 4.4.
The Integrated Ekman Transport 4.4.1.
Upwelling (Coastal and Equatorial) 4.5.
Sverdrup Dynamics 4.6. Vorticity 4.6.1.
Relative Vorticity 4.6.2. Planetary
Vorticity 4.6.3. Absolute Vorticity 4.6.4.
Potential Vorticity 4.7. Stommel’s
Solution 4.8. Munk’s Model and Future
Directions Chapter 5: The Abyssal
Connection 5.1. The Basics 5.2. The
Sinking Regions 5.3. The Conveyor Belt
5.4. Meridional Overturning Circulation
(MOC) 5.4.1. Atlantic MOC (AMOC) 5.5. A
Simple Model for The THC 5.6. Wind-Driven
and Thermohaline Chapter 6: Time–Dependent
Circulation 6.1. Time-Dependence and Waves
6.2. The Inertia-Gravity Wave Equations
6.2.1. Surface Gravity Waves 6.2.2. What
Exactly Is a Wave? 6.2.3. Examples of
Waves in Other Media 6.2.4. Fourier
Decomposition 6.2.5. An Example of Fourier
Decomposition 6.3. The Dispersion
Relationship 6.4. The Dispersion Diagram
6.5. Kelvin Waves 6.6. Rossby Waves
Chapter 7: The Layering of Oceans 7.1. The
Idea of Layers 7.2. The 2-Layer Ocean
7.2.1. Buoyancy Frequency 7.2.1.1.
Stratification and Vertical Mixing
7.2.1.2. Stratification and Horizontal
Mixing 7.2.1.3. Energy Extraction from
Stratification 7.2.1.4. Barrier Layer and
Inversion Layer 7.3. El Ni˜no and La Ni˜na
7.3.1. A Brief History 7.3.2. The Physical
Setup 7.3.3. Two-Layer Model 7.3.4. The
Equatorial Jet 7.3.5. Equatorial Kelvin
and Rossby Waves 7.4. The Indian Ni˜no
(IOD) 7.5. Instability 7.5.1. Barotropic
Instability 7.5.2. Baroclinic Instability
7.6. Examples of BT/BC Instabilities
Chapter 8: Introduction to Modeling 8.1.
Context of Modeling 8.1.1. What Is a
Model? 8.1.2. Purpose of Modeling 8.1.3.
What Do We Model? 8.1.4. How Do You Model?
8.2. General Approach to Modeling 8.2.1.
Domain and Grid-resolution 8.2.2. Initial
condition 8.2.3. Boundary conditions and
Forcing 8.2.4. Parameters 8.3. An Early
Ocean Model 8.4. Numerical Methods 8.4.1.
Finite Difference 8.5. The Basic Equations
8.6. The Model Equations 8.7. The Computer
Algorithm 8.8. Conclusion Chapter 9:
Turbulence and Eddies 9.1. Turbulence and
Eddy Viscosity 9.1.1. Turbulence 9.1.2.
The Closure Problem 9.1.3. A Simple Eddy
Viscosity 9.1.4. Kolmogorov Theory 9.1.5.
Approaches to Closure Modeling 9.1.6.
Relation to Vertical Mixing 9.2.
Turbulence and Mixed Layer 9.2.1. PWP
Model Chapter 10: Multiscale Ocean Models
10.1. A Brief Background 10.2. Multiscale
Models 10.3. Generalized Vertical
Coordinates 10.4. Harvard Ocean Prediction
System (HOPS) 10.5. The Princeton Ocean
Model (POM) 10.5.1. Vertical Mixing in POM
10.5.1.1. Mellor-Yamada 2.5. Closure
Scheme 10.6. Regional Ocean Modeling
System (ROMS) 10.6.1. Vertical Mixing in
ROMS 10.6.1.1. Philander and Pacanowski –
PPMIX 10.6.1.2. K-Profile Parameterization
– LMD94 10.6.1.3. Generic Length Scale
10.7. MITGCM 10.8. HYCOM 10.9. MIT – MSEAS
10.10. MOM6 Chapter 11: Simulation and
Prediction 11.1. Context of Simulation and
Prediction 11.2. Grid and Model Setup
11.3. Model Initialization 11.3.1.
Climatology 11.3.2. Observations for
Modeling Systems 11.3.2.1. In situ
Observations 11.3.2.2. Buoys 11.3.2.3.
Global Arrays 11.3.2.4. Regional Arrays
11.3.2.5. ARGO Floats 11.3.2.6. Drifters
11.3.2.7. Survey Data 11.3.2.8. Satellite
Observations 11.3.2.9. New Observational
Platforms 11.3.3. Forcing Fields and
Reanalyses 11.4. Optimal Interpolation
11.4.1. The Correction Method 11.4.2.
Kriging 11.4.3. Objective Analysis 11.5.
Data Assimilation 11.6. Example
Simulations 11.6.1. The North Atlantic
Simulation 11.6.2. A Bay of Bengal
Simulation 11.6.3. Brazil Current Genesis
region 11.7. Prediction 11.8. IOOS 11.9.
Applications 11.9.1. Climate Change and
Machine Learning 11.9.2. Technology and
Society Chapter 12: Synoptic Ocean
Modeling 12.1. The Synoptic Ocean 12.2.
FORMS 12.3. FORMS – Western North Atlantic
12.3.1. GSMR – Deeper Regions 12.3.2.
Feature Models – Gulf Stream and Rings
12.3.2.1. A Kinematic Synthesis 12.3.3.
GOMGB – Coastal FORMS 12.3.3.1. Water-Mass
Front FM 12.3.3.2. Shelf-Slope Front (and
Upwelling) FM 12.3.3.3. Coastal Eddy and
Gyre t/s Feature Models 12.3.4.
Initialization with FORMS – WNA 12.3.5. A
Forecasting System for WNA 12.4. Process
Studies with FORMS 12.4.1. The Strait of
Sicily 12.4.2. Brazil Current 12.5. A
World of FORMS Chapter 13:
Interdisciplinary Modeling 13.1.
Introduction 13.2. The Basics 13.3. The
Biogeochemical Cycles 13.4. Vertical
Distribution of Dissolved Gases 13.5.
Meridional Distribution of Dissolved Gases
13.6. Simple Biogeochemical Modeling 13.7.
Biogeochemical Models – Two Examples 13.8.
Biogeochemical Processes 13.8.1. Ocean
Acidification 13.8.2. Denitrification
13.8.3. Harmful Algal Blooms 13.8.4.
Hypoxia 13.9. Modeling Fish – Stocks and
Recruits 13.9.1. Stock–Recruitment
Relationship Chapter 14: Modeling of the
Climate System 14.1. Atmospheric Modeling
14.2. Temperature and CO2 14.3. Climate
System Models 14.4. Scenario Modeling
14.5. Climate Projection, Downscaling, and
Governance
◄ مطالعه
این کتاب برای کلیه علاقمندان آبزیان و
دانشجویان شیلات و زیستشناسی دریا،
میکروبیولوژی، محیط زیست و ...
مفید است.
|