پشتیبانی

■ ■ ■
درباره پیدا نکردید فهرست موضوعی همه کتابها خانه
  سایت کتابت خرید اینترنتی کتابهای شیلات و علوم دریایی
پشتیبانی  
کتابهای رایگان شیلات و آبزیان کتابهای چاپ  جدید شیلات و آبزیان خرید بسته ای کتاب طبقه بندی موضوعی کتابها
  طبقه‌بندی موضوعی : جلبک و پلانکتون کد محصول: 1066  

Integrated Wastewater Management and Valorization using Algal Cultures
 
 
◄ تصویر مولفین:
 
  Sibel Uludag-Demirer Goksel N. Demirer,
سیبل اولوداگ دمیرر گوکسل دمیرر
 


 
► Title→
نام کتاب
Integrated Wastewater Management and Valorization using Algal Cultures
► Author [s]→
نویسنده
Goksel N. Demirer,
Sibel Uludag-Demirer
► Publisher &
Year:
ناشر / سال نشر
Elsevier Science / 2022
► Pages:
تعداد صفحات
290
► ISBN→ 0323858597, 9780323858595
► Sample pages:
نمونه صفحات، برای
بزرگنمایی، کلیک کنید:
نمونه صفحه کتاب نمونه صفحه کتاب نمونه صفحه کتاب نمونه صفحه کتاب نمونه صفحه کتاب
نمونه صفحه کتاب نمونه صفحه کتاب نمونه صفحه کتاب نمونه صفحه کتاب نمونه صفحه کتاب
► Description:
شرح

■ درباره این کتاب:

Integrated Wastewater Management and Valorization using Algal Cultures provides a holistic view on coupled wastewater treatment and biomass production for energy and value-added products using algal cultures. Algal cultures provide low-cost nutrient (nitrogen and phosphorus) treatment and recovery from wastewaters, carbon-dioxide sequestration from waste gases, value-added generation in the form of bio-energy and bio-based chemicals, biosorption of heavy metals and biogas upgrading. The book addresses all these aspects in terms of role of algal cultures in environmental sustainability and circular economy. The production of high value products is addressed through pretreatment and anaerobic co-digestion of wastewater-derived microalgal biomass and microalgal biorefineries. The simultaneous dissolution and uptake of nutrients in microalgal treatment of anaerobic digestate is discussed, as is coupled electrocoagulation and algal cultivation for the treatment of anaerobic digestate and algal biomass production. Finally, optimization of algal biomass production is discussed using metagenomics and machine learning tools, and scale-up potential and the limitations of integrated wastewater-derived microalgal biorefineries is discussed.

Integrated Wastewater Management and Valorization using Algal Cultures offers an integrated resource on wastewater treatment, biomass production, bioenergy and value-added product generation for researchers in bioenergy and renewable energy, environmental science and wastewater treatment, as well as environmental and chemical engineering.

■ در این کتاب چه می‌خوانیم:

1 - Role of microalgae in circular economy 1. Background: circular economy and waste valorization 2. Conceptual framework: potential role of microalgae in the circular economy 2.1 Wastewater treatment by microalgal cultures 2.2 Biosequestration of CO2 emissions by microalgal cultures 2.3 Microalgal biorefineries 3. Techno-economic feasibility: scale-up potential and limitations of integrated wastewater-derived microalgal biorefineries 4. Conclusions Acknowledgments References Further reading 2 - Recent advancements in algae–bacteria consortia for the treatment of domestic and industrial wastewater 1. Introduction 2. Algae in biological treatment of wastewater 2.1 Conventional biological treatment of wastewater: microbial ecology and function 2.1.1 Suspended culture systems 2.1.2 Attached culture systems 2.2 Nutrient removal 2.2.1 Suspended culture systems for microalgal wastewater treatment 2.2.2 Immobilized systems for microalgal wastewater treatment 2.3 Removal of heavy metals 2.4 Biotransformation of organic micropollutants 3. Mechanism of symbiosis between algae and bacteria 3.1 Carbon–oxygen recycle 3.2 Growth stimulation 3.3 Toxicity reduction 4. Examples of wastewater treatment by algae–bacteria consortia 4.1 Domestic wastewater 4.2 Industrial wastewater 5. Circular economy, process design, and modeling aspects of algae–bacteria based wastewater treatment 5.1 Circular economy examples of algae–bacteria consortia in wastewater treatment 5.2 Dynamic algae–bacteria models for wastewater treatment 6. Conclusions References 3 - Integrated algal-based sewage treatment and resource recovery system 1. Introduction 1.1 Concerns about traditional POTWs 1.2 Reinvention of POTWs 1.2.1 Potential for energy recovery from sewage 1.2.2 Potential for nutrient recovery from sewage 1.3 Emerging approaches for sewage treatment and resource recovery 1.4 Algal-based sewage treatment 1.4.1 Mixotrophic sewage treatment and resource recovery system 1.4.2 STaRR system versus high-rate algal ponds 2. Details of the STaRR system 2.1 Mixotrophic sewage treatment by Galdieria sulphuraria 2.2 Hydrothermal liquefaction of algal biomass 2.3 Characterization of HTL byproducts 2.4 Leaching of phosphates from biochar 2.5 Recovery of phosphate from eluate of biochar 2.6 Recovery of nitrogen from aqueous product of HTL 3. Performance of the STaRR system 3.1 Sewage treatment 3.1.1 Nitrogen removal 3.1.2 Phosphate removal 3.1.3 BOD removal 3.1.4 Comparison of STaRR system with other technologies 3.2 Bacteria and virus removal 3.2.1 Bacteria removal 3.2.2 Virus removal 3.2.3 Comparison of STaRR system with other technologies 3.3 Energy recovery 3.3.1 Recovery of biocrude oil 3.3.2 Comparison of STaRR system with other technologies 3.4 Nutrient recovery 3.4.1 Aqueous phase characterization 3.4.2 Biochar characterization 3.4.3 Recovery of P 3.4.4 Recovery of N 3.4.5 Comparison of STaRR system with other technologies 4. Outlook Acknowledgments References Further reading 4 - Microalgae-based technologies for circular wastewater treatment 1. Introduction to circular wastewater treatment 1.1 Principles of circularity in wastewater 1.2 Recoverable resources from wastewater 2. Microalgae use for circularity 2.1 Advantageous physiology and biochemistry 2.2 Ecosystem functioning approach 2.3 Biotechnology approach 2.3.1 Open ponds or raceways 2.3.2 Single-layer or horizontal tube reactors 2.3.3 Three-dimensional tubular reactors 2.3.4 Flat plate reactors 2.4 Socio-economical approach 2.5 Uncertainties and challenges when using microalgae-based technology for circularity 2.5.1 Technology application challenges 2.5.2 Contamination of algal biomass 2.5.2.1 Contaminants of emerging concern 2.5.2.2 Heavy metals 2.5.2.3 Human pathogens 3. Microalgae-based technologies for wastewater treatment 3.1 Currently technologies—large-scale application 3.2 Developing technologies—lab scale 3.3 Futuristic perspective—drawing board 3.4 Advantages of using microalgae-based technologies 3.5 Risks involved in microalgae technology implementation 3.6 Mitigation approaches for decreasing risks 4. Conclusions and perspectives References 5 - Treatment of anaerobic digestion effluents by microalgal cultures 1. Introduction 2. Treatment of digestates by microalgal cultures 2.1 Carbon constituents 2.1.1 Inorganic carbon 2.1.2 Organic carbon 2.2 Nitrogen constituents 2.3 Phosphorus constituents 2.4 Heavy metals and metalloids 2.5 Micropollutants 3. Microalgal growth in digestates 4. Challenges and potential remedies for digestate treatment by microalgae 4.1 Turbidity 4.2 Ammonium/ammonia inhibition 4.3 Phosphorus limitation 4.4 Carbon limitation 4.5 Dominance of other communities 4.6 Limitations regarding biogas upgrading coupled with digestate treatment 5. Pilot scale plants 6. Outcomes of techno-economic and life cycle assessment analysis 7. Conclusions References 6 - Techno-economic analysis and life cycle assessment of algal cultivation on liquid anaerobic digestion effluent ... 1. Introduction 2. Material and methods 2.1 Chemical and EC treatment of liquid digestate 2.2 Algal cultivation systems 2.3 Mass and energy balance analysis 2.4 Economic analysis 2.5 Life cycle assessment 3. Results and discussion 3.1 Mass and energy balance of the studied systems 3.2 Economic analysis 3.3 Life cycle impact assessment 4. Conclusions Acknowledgments References 7 - Biomethane production from algae biomass cultivated in wastewater 1. Introduction 2. Material and methods 2.1 Pilot and prototype plant description 2.1.1 Pilot plant (200m2) 2.1.1.1 Anaerobic sludge blanket reactors (UASB) for raw wastewater pretreatment 2.1.1.2 Cultivation and harvesting 2.1.1.3 Anaerobic digesters 2.1.2 Scale up process: prototype plant (1000m2) 2.1.2.1 Cultivation area 2.1.2.2 Harvesting by flotation 2.1.2.3 Anaerobic digesters 2.2 Experimental design 2.3 Analytical procedures 3. Results and discussion 3.1 Pilot plant performance 3.1.1 Wastewater treatment and biomass characteristics 3.1.2 Biomass production 3.1.3 Biogas production: anaerobic digestion on lab scale 3.2 Prototype performance 3.2.1 Wastewater treatment 3.2.2 Biogas production: anaerobic digestion in prototype scale 3.3 Energy balances 4. Conclusions References 8 - Anaerobic digester biogas upgrading using microalgae 1. Introduction 2. Raw biogas characteristics 3. Required gas quality for heat and power equipment 4. Current commercial biogas conditioning technologies 4.1 CO2 removal 4.1.1 Water scrubbing 4.1.2 Organic solvent scrubbing 4.1.3 Chemical absorption 4.1.4 Pressure swing adsorption 4.1.5 Cryogenic separation 4.1.6 Membrane separation 4.1.7 Biological methods 4.2 H2S removal 4.2.1 H2S removal through adsorption 4.2.2 H2S removal using biological filters 4.3 Siloxane removal 5. Novel microalgae biogas conditioning technology 5.1 Carbon dioxide removal 5.2 Sulfur 5.3 Nitrogen and phosphorus 5.4 Oxygen production 5.5 Microalgae growth inhibition 5.5.1 CO2 affect 5.5.2 H2S toxicity 5.5.3 Other potential toxicity issues 6. Benefits of algae biogas upgrading 7. Limitations of algae biogas upgrading systems 8. Potential carbon and nutrient sources for algae 9. Algal bioreactor configurations and operations 9.1 Influence of alkalinity and temperature 9.2 Influence of light: light wavelength/photoperiod 9.3 Mono- and cocultivation of microalgae 10. Biogas constituents removed 10.1 CO2 removal and energy density upgrading 10.2 H2S removal 10.3 Siloxanes removal 10.4 VOCs removal 11. Algal reactor products utilization and management 12. Conclusions and recommendations for future research References 9 - Large-scale demonstration of microalgae-based wastewater biorefineries 1. Introduction 2. Wastewater versus seawater as culture medium 3. Large-scale raceway ponds construction 3.1 Construction of pond walls and bottom 3.2 Construction of carbonation station and settling sumps 3.3 Covering or lining of the ponds 3.4 Mixing system 3.4.1 Conventional HRAP with paddlewheel 3.4.2 Low energy algae reactor 3.5 Flow deflectors 4. Microalgae consortium 5. Harvesting process 5.1 Optimal strategy to efficiently harvest microalgae biomass 5.2 Effluent conditioning for enhanced harvesting 5.3 Preconcentration 5.4 Filtration or centrifugation 6. Potential WWT using microalgae at large scale 6.1 Wastewater performance 6.2 Energy consumption and process sustainability 6.3 From commodities to higher value products 7. Conclusion References 10 - Cultivation of microalgae on agricultural wastewater for recycling energy, water, and fertilizer nutrients 1. Introduction 2. Microalgae for agricultural wastewater treatment 2.1 Recovery of resources from agricultural wastewater using microalgae 2.2 Microalgae grown on swine wastewater 2.3 Microalgae grown on aquaculture wastewater 2.4 Microalgae grown on the effluent of anaerobic digestion 3. Microalgae for feeds, fuels, and fertilizers 3.1 Microalgae biofuels 3.1.1 Biodiesel 3.1.2 Bioethanol 3.1.3 Methane 3.1.4 Hydrogen 3.2 Microalgae fertilizers 3.3 Microalgae-based feeds 4. Microalgae cultivation systems 4.1 Open ponds 4.2 Photobioreactors 4.3 Attached microalgae cultivation 4.4 Floating photobioreactors 5. Challenges of resource recovery using microalgae cultivation in wastewater 5.1 CO2 and fertilizer nutrient effects 5.2 Environmental effects 5.3 Biological effects 6. Enhancement of microalgae cultivation in wastewater 6.1 Enhancement of microalgae cultivation with microbial fuel cells 6.2 Nanotechnology for the enhancement of microalgae cultivation and harvesting 6.3 Enhancement of microalgae cultivation with artificial intelligence 7. Conclusions

◄ مطالعه این کتاب برای کلیه علاقمندان جلبک‌ها برای نوشتن مقاله و تحقیق و ...  کاربرد دارد.


 
تماس با ادمین در اینستاگرام
تماس با ادمین در اینستاگرام
 جهت دریافت کتاب، کد محصول یا لینک این صفحه را با تلگرام یا اینستاگرام به ادمین بدهید:
قیمت هر کتاب این سایت، فقط:
9 هزار تومان

این مبلغ، صرف توسعه سایت علمی  fishbase.ir می‌شود
 

توجه: لینک دانلود تا قبل دریافت، به مدت 12 ساعت معتبر است.
بعد از اتمام دانلود موفق، لینک خود به خود ودر همان لحظه منقضی می‌شود.
اگر در مراحل دانلود مشکلی داشتید، با پشتیبان (تلگرام یا چتِ سایت) صحبت کنید.


■ پیشنهادات مرتبط ↓
Algae and Aquatic Macrophytes in Cities: Bioremediation, Biomass, Biofuels and Bioproducts Algal Biotechnology_Integrated Algal Engineering for Bioenergy, Bioremediation, and Biomedical Applications 	Advanced Methods and Mathematical Modeling of Biofilms: Applications in Health Care, Medicine, Food, Aquaculture, Environment, and Industry Algal Genetic Resources_ Cosmeceuticals, Nutraceuticals, and Pharmaceuticals from algae
Algae and Aquatic Macrophytes
 in Cities
↓ دریافت کتاب
Algal Biotechnology_Integrated Algal Engineering for Bioenergy...
↓ دریافت کتاب
Advanced Methods and Mathematical Modeling of Biofilms
↓ دریافت کتاب
Algal Genetic Resources
Cosmeceuticals, Nutraceuticals, and...
↓ دریافت کتاب
اطلاعات کامل و خرید آنلاین کتاب اطلاعات کامل و خرید آنلاین کتاب اطلاعات کامل و خرید آنلاین کتاب اطلاعات کامل و خرید آنلاین کتاب
 
بسته دوم کتابهای در مورد جلبک
 
کتاب در مورد جلبک
 
کتابهای بهداشت و بیماریهای آبزیان
 
اینستاگرام کانال تلگرام fishbase.ir با حمایت:

صفحه اصلی | همه کتابها| طبقه‌بندی موضوعی| درباره ما| دنبال کتاب می‌گردید؟

کلیه حقوق این وبسایت، برای ketabet.ir محفوظ است. این سایت جزو گروه سایت‌های فیش‌بیس دات آی.آر. (بانک اطلاعاتی ماهیان ایران) است.